Biochimica et Biophysica Acta 1788 (2009) 1434-1443

journal homepage: www.elsevier.com/locate/bbamem

Contents lists available at ScienceDirect

Biochimica et Biophysica Acta

Arginine 383 is a crucial residue in ABCG2 biogenesis

Orsolya Polgar ?, Lilangi S. Ediriwickrema ?, Robert W. Robey ?, Ajay Sharma °, Ramanujan S. Hegde °,
Yongfu Li ¢, Di Xia ¢, Yvona Ward ¢, Michael Dean ¢, Csilla Ozvegy-Laczka f, Balazs Sarkadi , Susan E. Bates *

@ Medical Oncology Branch, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA

b Cell Biology and Metabolism Branch, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA

€ Laboratory of Cell Biology, National Cancer Institute, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA

d Cell and Cancer Biology Branch, National Cancer Institute, National Institute of Child Health and Human Development, NIH, 9000 Rockville Pike, Bethesda, MD 20892, USA

€ Human Genetics Section, Laboratory of Genomic Diversity, NCI-Frederick, Fort Detrick, Frederick, MD 21702, USA

f National Medical Center, Institute of Haematology and Immunology, Membrane Research Group of the Hungarian Academy of Sciences, Dioszegi ut 64., H-1113 Budapest, Hungary

ARTICLE INFO ABSTRACT

Article history:

Received 14 October 2008

Received in revised form 23 January 2009
Accepted 15 April 2009

Available online 3 May 2009

ABCG?2 is an ATP-binding cassette half-transporter initially identified in multidrug-resistant cancer cell lines
and recently suggested to play an important role in pharmacokinetics. Here we report studies of a conserved
arginine predicted to localize near the cytoplasmic side of TM1. First, we determined the effect of losing
charge and bulk at this position via substitutions with glycine and alanine. The R383G mutant when
transfected into HEK cells was not detectable on immunoblot or by functional assay, while the R383A mutant
exhibited detectable but significantly decreased levels compared to wild-type, partial retention in the ER and
altered glycosylation. Efflux of the ABCG2-substrates mitoxantrone and pheophorbide a was observed. Our
experiments suggested rapid degradation of the R383A mutant by the proteasome via a kifunensine-
insensitive pathway. Interestingly, overnight treatment of the R383A mutant with mitoxantrone assisted in
protein maturation as evidenced by a shift to the N-glycosylated form. The R383A mutant when expressed in
insect cells, though detected on the surface, had no measurable ATPase activity. In addition, substitution with
the positively charged lysine resulted in significantly decreased protein expression levels in HEK cells, while
retaining function. In conclusion, arginine 383 is a crucial residue for ABCG2 biogenesis, where even the most
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conservative mutations have a large impact.

Published by Elsevier B.V.

1. Introduction

ABCG2 is a member of the G subfamily of human ATP-binding
cassette (ABC) transporters [1]. It was first identified almost a decade
ago in multidrug-resistant carcinoma cell lines [2-4]. Consequently,
the first substrates of ABCG2 described were chemotherapeutic agents,
such as mitoxantrone, topotecan, daunorubicin, methotrexate, SN-38,
flavopiridol, and more recently the tyrosine kinase-inhibitors imatinib
and gefitinib [3-11]. Subsequent to the initial discovery of ABCG2, a
wide range of substrates have been identified, among them fluorescent
dyes, porphyrins, flavonoids, antibiotics, HMG-CoA-reductase inhibi-
tors, and antiviral agents [12]. The list of inhibitors of ABCG2-
mediated transport is also rapidly expanding; Fumitremorgin C (FTC)
and its analog Ko143 are most frequently used in the laboratory
[13,14]. Despite the fact that several chemotherapeutic agents have
been confirmed as substrates of ABCG2, its relevance in drug
resistance is still unclear and no clinical trials have to date been
initiated to evaluate its role in improving chemosensitivity. On the
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other hand, the expression pattern in normal tissues, namely its
presence in the placenta, blood-brain barrier, and intestine suggests
a physiologic role in protection against xenobiotics. The normal tissue
distribution of ABCG2 and the fact that both dietary compounds and
several drugs currently in clinical use are substrates, predict a major
role for the protein in pharmacokinetics. ABCG2 has also been
described on the surface of the so-called side population (SP) of stem
cells, further suggesting an important physiologic role for the
transporter [15].

ABCG2 is a 655-amino acid plasma membrane protein with six
predicted transmembrane (TM) alpha helices. With its one nucleotide-
binding domain (NBD) and one transmembrane domain (TMD) the
protein is considered a half-transporter and is thought to homo-
dimerize or homo-oligomerize for function [16-20]. Currently, only
limited information is available regarding the structure of ABCG2. The
protein is N-glycosylated at asparagine 596 [21], phosphorylated at
threonine 362 [22], and it has been suggested that a disulfide bond
forms between cysteines 603 in the homodimer [23]. The structure is
most likely similar to the recently crystallized bacterial ABC
transporters, yet the lack of significant sequence similarity and the
reverse orientation with an N-terminal NBD and a C-terminal TMD,
make it hard to predict the three dimensional structure of ABCG2.


mailto:sebates@helix.nih.gov
http://dx.doi.org/10.1016/j.bbamem.2009.04.016
http://www.sciencedirect.com/science/journal/00052736

0. Polgar et al. / Biochimica et Biophysica Acta 1788 (2009) 1434-1443 1435

Here we present studies aimed at understanding the role of a
conserved arginine (R383) presumed to localize N-terminally to the
first transmembrane segment (TM) of ABCG2 near the cytoplasmic
side of the membrane. Most computer programs used to predict
transmembrane helices identify glutamine 393 or alanine 394 as the
first residue of TM1 of ABCG2 [24]. Our group recently published a
homology model of ABCG2, in which, after considering various
empirical rules we predicted a longer TM1 that starts at serine 384
[24]. The Msba structure we used to model the TMD region of
ABCG2 has since been retracted together with four other structures
by the same research group due the problems in the software used
to analyze the data [25]. However, the NBD region (based on MalK
from E. coli) and the predicted number and length of the TM
segments in our model are not affected by these retractions.
Mutational analysis of this arginine residue, as presented below,
shows the importance of this residue in the proper function and
biogenesis of ABCG2.

2. Experimental procedures
2.1. Cell culture

Human embryonic kidney (HEK) 293 cells (ATCC, Manassas, VA)
were maintained in Minimal Essential Medium (Invitrogen, Carlsbad,
CA), supplemented with 10% fetal bovine serum (Invitrogen), 2 mM
glutamine (BioFluids, Rockville, MD), and 100 U/L penicillin/
streptomycin (BioFluids) at 37 °C in 5% CO,. Stably transfected cell
lines were grown in 2 mg/mL G418 (Invitrogen).

Cells were incubated overnight at 37 °C with either 5 pM
mitoxantrone (Sigma), or 10 nM bafilomycin (Sigma), or 3 uM
MG132 (Calbiochem, San Diego, CA), or 20 pg/mL kifunensine
(Cayman Chemical, Ann Arbor, Mi) followed by membrane prepara-
tion and immunoblotting as described below.

2.2. Mutagenesis and transfection

The R383A, R383G, R383H, R383K, and R383G/S384R mutants
were generated by site-directed mutagenesis in the pcDNA3.1/Myc-
HisA(—) vector (Invitrogen) as previously described [26]. The
mutations were confirmed by sequencing the vectors initially,
followed by genomic DNA sequencing of one representative clone of
each stably transfected mutant for the full-length ABCG2 insert.

Stable transfectants were generated in HEK 293 cells as previously
described [26]. Transfections were performed using TransFast trans-
fection reagent (Promega, Madison, WI). Colonies were selected in
2 mg/mL G418 with frequent removal of dead cells and were
expanded prior to study. Cells previously transfected with wild-type
ABCG2, R482G and pcDNA vector only were used as controls [27].

2.3. Membrane preparation and immunoblotting

Microsomal membrane preparation was performed as described
previously [26]. Briefly, cells were disrupted by nitrogen cavitation
(Parr Instrument, Moline, IL) in a hypotonic lysis buffer, and
membranes were obtained by ultracentrifugation at 40 000 rpm.
Protein concentrations were measured by the Bradford method with
Bio-Rad's Protein Assay Reagent (Bio-Rad, Hercules, CA) using BSA
standards (Pierce, Rockford, IL).

Immunoblotting was performed as previously described [26].
Briefly, microsomal membrane proteins were loaded onto precast
7.5% (w/v) SDS-polyacrylamide gels (Bio-Rad), subjected to electro-
phoresis, and electrotransferred onto PVDF membranes (Millipore,
Bedford, MA). Blots were probed with a 1:250 dilution of the
monoclonal anti-ABCG2 antibody BXP-21 (Kamiya Biomedical,
Seattle, WA) and visualized with the Odyssey System (LI-COR,
Lincoln, NE) using a 1:2000 dilution of the IRDye 800CW goat anti-

mouse secondary antibody (LI-COR). Membranes were stained with
0.1% Ponceau S (Sigma, St. Louis, MO) and checked for comparable
loading.

For enzymatic deglycosylation, the Glyko® N-Glycanase® and
Glyko® Endoglycosidase H kits were used (ProZyme, San Leandro,
CA) following the manufacturer's instructions. 50-100 pg of
membranes was incubated with 2 pL PNGase F, or 6.7 L Endo H
overnight at 37 °C followed by immunoblotting as described above.

2.4. Northern blotting

RNA was extracted from cells using RNA STAT-60 (Tel-Test Inc.,
Friendswood, TX). Northern blot analysis was performed by standard
methods. Labeling of cDNAs was accomplished using Riboprobe in
Vitro Transcription Systems (Promega). To compare the quality and
quantities of RNA, 20 g total RNA was electrophoretically separated in
a 1% agarose, 6% formaldehyde gel and transferred onto a nitrocellu-
lose membrane. Gels were stained with ethidium bromide and
checked for comparable loading. Northern blot labeling was
performed using a riboprobe generated from the first 662 bp of
ABCG2 subcloned in a pCRII-TOPO vector (Invitrogen).

2.5. In vitro transcription and translation

In vitro transcription and translation studies with T7 RNA
polymerase using the rabbit reticulocyte lysate system were carried
out as described by Hegde et al. [28]. PCR-amplified wild-type ABCG2
or the R383A mutant from the appropriate pcDNA3.1 vectors were
used as templates. Transcription reactions were performed for 1 h at
37 °C and translation reactions for 1 h at 32 °C.

2.6. Flow cytometry

Flow cytometry with the anti-ABCG2 antibody 5D3 (eBioscience,
San Diego, CA), was performed as previously described [26]. Briefly,
cells were trypsinized and resuspended in DPBS with 2% bovine
serum albumin (BSA) to which phycoerythrin-conjugated 5D3 or
phycoerythrin-conjugated mouse IgG was added for 30 min. For the
transport studies, cells were trypsinized, resuspended in complete
media (phenol red-free IMEM with 10% fetal calf serum containing
20 uM mitoxantrone (Sigma), or 1 pM pheophorbide a (Frontier
Scientific, Logan, UT), or 250 nM BODIPY-prazosin (Molecular Probes,
OR) with or without 10 uM of the ABCG2 blocker, Fumitremorgin C
(FTC)), and incubated for 30 min at 37 °C in 5% CO,. (FTC was
synthesized by Thomas McCloud, Developmental Therapeutics
Program, Natural Products Extraction Laboratory, National Institutes
of Health, Bethesda, MD). Cells were then incubated for 1 h at 37 °C
in substrate-free media, continuing with or without 10 pM FTC. Cells
were analyzed on a FACSsort flow cytometer, equipped with both a
488 nm argon laser and a 635 nm red diode laser.

2.7. Immunofluorescence

Immunofluorescence studies were performed as previously
described [26,29]. Briefly, cells were cultured for 3 days followed by
fixation with 4% paraformaldehyde and permeabilization with pre-
chilled (—20 °C) methanol. After blocking in a buffer containing
2 mg/mL BSA, 0.1% Triton X-100, and 5% goat serum, samples were
incubated with a 1:100 dilution of the mouse monoclonal anti-ABCG2
antibody, BXP-21 (Kamiya Biomedical), and with a 1:1000 dilution of
the rabbit polyclonal anti-calnexin antibody (Abcam, Cambridge, MA)
for 1 h at room temperature followed by incubation with FITC-
conjugated goat anti-mouse and rhodamine-conjugated goat anti-
rabbit secondary antibodies (Jackson ImmunoResearch Laboratories,
West Grove, PA). After repeated washes, the staining was analyzed
with an Olympus IX70 Laser Scanning Confocal Microscope.
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2.8. Generation of Sf9 cells expressing the R383A and R383G mutants

Generation of transfer vectors containing wild-type ABCG2 has
been described previously [30,31]. The transfer vectors carrying the
R383A and R383G mutants were generated by cloning the Sacl
fragment of pcDNA 3.1/R383A or R383G into the corresponding site of
the pAcUW21-L vector. Recombinant baculoviruses carrying the
different human ABCG2 ¢cDNAs were generated with the BaculoGold
transfection kit (Pharmingen, San Diego, CA) according to the
manufacturer's instructions. Sf9 (Spodoptera frugiperda) cells were
infected and cultured as described previously [32]. Individual virus
clones, expressing high levels of the different human ABCG2 mutants,
were obtained by end point dilution and subsequent amplification.

2.9. Membrane preparation and immunodetection of ABCG2 in Sf9 cells

After being infected with virus for 3 days, Sf9 cells were harvested,
and membranes were isolated. Membrane protein concentrations
were determined by the modified Lowry method as previously
described [32]. Immunoblotting was performed as described for the
HEK 293 cells with a 1:2000 dilution of the monoclonal BXP-21
antibody.

Flow cytometry was performed by labeling the Sf9 cells at 37 °C
using a final concentration of 1 pg/mL of the anti-ABCG2 monoclonal
antibody 5D3. Binding was visualized by the addition of a secondary
phycoerythrin-conjugated anti-mouse IgG (Immunotech, Marseille,
France) at a final concentration of 1 pg/mL. Flow cytometric
determination of the antibody reaction was carried out using a
FACSCalibur cytometer with 488 nm excitation and 585/42 nm
emission wavelengths.

2.10. ATP hydrolysis

Sf9 membranes containing wild-type ABCG2, R383A, or R383G
were harvested, and membranes were isolated and stored at — 80 °C
according to the method of Sarkadi et al. [33]. ATPase activity was
measured as described previously by assessing the liberation of
inorganic phosphate from ATP with a colorimetric reaction [16].

3. Results

Structure-function studies were undertaken to evaluate the role of
arginine 383, which is predicted to immediately precede TM1 of
ABCG2 [24]. This residue is highly conserved in the ABCG subfamily
and in the Drosophila white protein, an ortholog of human ABCG2.
Fig. 1 shows an alignment of the six members of the ABCG subfamily
and the Drosophila white protein created in the program ClustalX.
Arginine 383 is also remarkably well conserved in all ABCG2 genes
from other species that have so far been sequenced (Supplemental
Table 1).

To begin investigating the role of arginine 383 in ABCG2, HEK 293
cells were stably transfected with pcDNA3.1 vectors carrying the
R383G and R383A mutants. We chose to substitute arginine with
glycine or alanine to determine the impact of loss of charge and bulk at
this position. Further, in the case of arginine 482 predicted to localize

383
ABCG2 QLRWVSERSF KNLLGNPQAS IAQIIVTVVL GLVIGAIYFG LKNDSTG
ABCGS5 KLGVLLRRVT RNLVRNKLAV ITRLLONLIM GLFLLFFVLR VRSNVLK
ABCG8 QFTTLIRRQI SNDFRDLPTL LIHGAEACLM SMTIGFLYFG HGSIQLS
ABCGl QFCILFKRTF LSIMRDSVLT HLRITSHIGI GLLIGLLYLG IGNETKK
ABCG4 QFCILFKRTF LSILRDTVLT HLRFMSHVVI GVLIGLLYLH IGDDASK
white QFRAVLWRSW LSVLKEPLLV KVRLIQTTMV AILIGLIFLG QQLTQVG

Fig. 1. Sequence alignment for members of the ABCG subfamily. Arginine 383 of ABCG2
is well conserved in the ABCG subfamily and in the Drosophila white protein. Arginine
383 and other nearby positively charged residues in ABCG2 are highlighted. The
program ClustalX was used to create the alignments.

near the cytoplasmic interface of TM3, an arginine to glycine mutation
results in marked alterations in substrate specificity with the addition
of substrates including anthracyclines and rhodamine 123 [34]. HEK
cells stably transfected with wild-type ABCG2 and pcDNA3.1 vector
only served as controls. First, flow cytometry performed on non-
permeabilized cells using the 5D3 monoclonal antibody to recognize
an extracellular epitope of ABCG2 demonstrated detectable levels of
surface expression for some of the R383A clones, of which clones #11
and #24 exhibited the highest levels, though significantly lower
compared to the wild-type (Fig. 2A). On the other hand, no surface
expression was detected in any of the 24 glycine-substituted clones
(Fig. 2A).

To test the functionality of the R383A and R383G mutants, flow
cytometry was performed after incubating cells with the ABCG2-
substrates mitoxantrone and pheophorbide a, with or without the
ABCG2-inhibitor FTC (Fig. 2B). The magnitude of drug transport in this
assay is indicated by the separation between histograms obtained
from cells incubated with or without the inhibitor. The experiments
were repeated several times, with limited efflux seen only in the
R383A mutant as represented by a slight shift between the FTC-
treated and non-treated histograms. Transport of pheophorbide a was
more consistently observed in these experiments, most likely due to
the fact that it is a “better” substrate than mitoxantrone, as evidenced
by a larger shift in the wild-type transfectant, which was also observed
in drug-selected cell lines [35]. The R383G mutant, as expected from
its absence at the cell surface, did not display transport activity for
either mitoxantrone or pheophorbide a.

Protein expression levels on immunoblot with the BXP-21
monoclonal anti-ABCG2 antibody were significantly decreased for
the R383A mutant, and a band slightly lower than the expected
72 kDa was also visible (Fig. 2C). For subsequent experiments, clone
#24 was used due to its slightly higher level of expression. The R383G
mutant clones were virtually not detectable, only clone #22 displayed
some level of expression and was also represented by a double band
(Fig. 2C). In some of our subsequent experiments, the mutants were
represented only by the lower molecular weight band on immunoblot
under identical experimental conditions. To examine whether this
lower molecular weight band corresponds to the non-glycosylated
form of ABCG2, we performed overnight enzymatic deglycosylations
of mutant and wild-type proteins with either N-glycosidase F, or
endoglycosidase (endo) H. The molecular weight of the mutant
proteins visualized on immunoblot following incubation with both
enzymes was identical and slightly lower than without treatment,
suggesting altered glycosylation of the mutant with endo H
sensitivity, which would imply that the mutants did not reach the
trans Golgi network (Fig. 2D, for the mutant two independent
experiments are shown). To exclude the possibility that mutations
at position 383 altered binding of the BXP-21 antibody, a commer-
cially available rabbit polyclonal antibody and the 405 and 391 rabbit
polyclonal antibodies with different epitopes previously generated in
our laboratory [36] were also used on immunoblots of all the mutants
described in this manuscript, none of which yielded better detection
than BXP-21 (data not shown). Finally, Northern blotting was carried
out to confirm that the reduced expression of these mutants was not
due to poor transfection efficacy; significant amounts of ABCG2 RNA
were noted in representative clones of the R383A and R383G mutants
(Fig. 2E).

To determine whether the low protein levels were due to failure of
protein translation or degradation mediated by ER quality control
mechanisms, we performed in vitro transcription and translation in
the presence, or absence of rabbit reticulocyte lysates. These
experiments showed no difference between wild-type ABCG2 and
the R383A mutant, suggesting that, similarly to the wild-type, the
mutant protein is translated and inserted properly into the membrane
in the in vitro system and implying that the ER quality control must
promote rapid degradation in vivo (data not shown).
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Fig. 2. Surface expression, function, protein and RNA levels of the R383A and R383G mutants transfected into HEK 293 cells. (A) Flow cytometry with the 5D3 surface antibody for two
clones of each mutant. Stably transfected HEK 293 cells were incubated for 30 min in phycoerythrin-labeled negative control antibody (solid line) or 5D3 antibody (dashed line) and
analyzed in a FACSsort flow cytometer. (B) Cells were incubated for 30 min in complete media containing 1 uM pheophorbide a or 20 uM mitoxantrone with or without 10 uM of the
ABCG2-blocker FTC. (Accumulation without FTC — solid line, with FTC — dashed line). (C) Membrane proteins from the same mutant clones and wild-type were separated by SDS/
PAGE (50 pg/lane), transferred onto a PVDF membrane, and probed with the monoclonal anti-ABCG2 antibody BXP-21. (D) Immunoblot analysis of membrane proteins from wild-
type (50 pg) and R383A (150 pg) transfectants with the BXP-21 following overnight treatment with endo H, or with N-glycosidase F. The second lane for both the wild-type and the
mutant represents overnight incubation in buffer with no enzyme. Two independent experiments are shown for the mutant. (E) Northern blot showing RNA levels of one clone of
each mutant compared to wild-type and empty vector transfected cells (pcDNA). Total RNA (20 pg/lane) from each transfectant was electrophoresed and transferred to a

nitrocellulose membrane.

To investigate the mechanisms leading to the dramatic decrease in
protein levels observed with the mutants, the R383A mutant was
incubated overnight separately with either the lysosome inhibitor
bafilomycin, or the proteasome inhibitor MG132 (Fig. 3). Incubation
with bafilomycin did not result in any changes in the amount of
mutant protein detected. On the other hand, treatment with MG132
led to a 3 to 5-fold increase in the amount of the R383A mutant
observed on immunoblot (Fig. 4A), indicating that the mutant is
degraded by the ubiquitin-proteasome pathway. To further explore
the ER quality control mechanism behind the degradation of the
mutant, we incubated the R383A mutant overnight in kifunensine, a
potent inhibitor of mannosidase I. Mannose trimming by mannosidase
I is one of the known events leading to ubiquitination and proteasomal
degradation via the so-called glycan-dependent pathway (Fig. 3) [37].
Fig. 4B shows that kifunensine treatment did not increase the amount
of the R383 mutant on immunoblot. In the case of the wild-type, a

lower molecular weight band was visualized, suggesting that a
fraction of the wild-type protein is degraded by a kifunensine-
sensitive pathway. Overnight treatment with MG132 and kifunensine
was also performed on HeLa cells transiently transfected with the
wild-type and the R383A mutant providing results identical to the
ones presented with the stable HEK transfectants (data not shown).

Next, we evaluated whether the mutant proteins could be
“rescued” in the presence of a substrate or by decreased temperature.
Treatment with substrate drugs has been reported to stabilize some P-
glycoprotein mutants [38] and we have previously reported increased
protein levels for the GXXXG motif-mutants of ABCG2 following
overnight treatment with mitoxantrone [26]. The second approach,
growing cells at lower temperature, was successful in increasing
protein levels of certain temperature-sensitive CFTR mutants [39].
Overnight treatment of the stably transfected HEK cells with the
ABCG2-substrate mitoxantrone failed to result in an increase in
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mutant protein levels on immunoblot and neither did culturing the
transfected cells at 28 °C for two days (data not shown). Interestingly,
in the case of the R383A mutant, though the overnight treatment with
mitoxantrone did not result in increased protein expression level, a
shift to the 72-kDa band was visible in the drug-treated lanes,
suggesting that the drug did act as a chaperone and helped generate

A wt

the mature, N-glycosylated form of the protein, although levels were
not increased (Fig. 4C). Two separate experiments are shown in the
figure, both demonstrating this shift in the lower band from
constituting approximately 60% of total detectable ABCG2 in the
untreated mutant to an average of 10% following treatment with
mitoxantrone.
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Fig. 6. The R383A mutant in Sf9 insect cells. (A) Immunodetection of the indicated amounts of membrane proteins with the BXP-21 monoclonal anti-ABCG2 antibody. (B) Flow
cytometry with the 5D3 monoclonal anti-ABCG2 antibody using non-permeabilized Sf9 cells (as detailed in Fig. 2). (C) Basal ATPase activity of the wild-type, a 1:5 dilution of the
wild-type, the R383A mutant, and the non-functional K86M mutant in Sf9 membranes. ATPase activity was measured determining the liberation of inorganic phosphate from ATP
with a colorimetric reaction with (grey bars) or without (black bars) the ABCG2-specific inhibitor Ko143.
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To determine whether the changes seen on immunoblot following
treatment with MG132 and mitoxantrone are accompanied by parallel
changes on the cell surface, flow cytometry experiments were
performed with the 5D3 surface antibody subsequent to overnight
incubation with either 3 uM MG132, or 5 pM mitoxantrone (Fig. 4D).
While we previously observed an increase in the amount of the R383A
mutant protein represented by the lower than 72-kDa band on
immunoblot (Fig. 4A), we did not detect any increase on the cell
surface with the 5D3 antibody, suggesting that by blocking the
proteasomal degradation pathway the mutant protein accumulated
intracellularly. On the other hand, in agreement with the shift
observed in the case of the R383A mutant to the 72-kDa mature
form on immunoblot (Fig. 4C), we detected increased cell surface
expression of the mutant protein by flow cytometry following
overnight treatment with mitoxantrone (Fig. 4D). Treatment with
mitoxantrone resulted in a similar increase in the amount of the
R383G mutant detected on the cell surface (data not shown).

To further analyze the localization of the R383A and R383G
mutants in the mammalian cells, immunofluorescent staining
followed by confocal microscopy was performed. In the case of the
R383A mutant, colocalization with the ER marker calnexin was
suggested, while some of this mutant also localized to the cell surface
(Fig. 5), which is in agreement with the results of flow cytometry
shown in Fig. 2. The expression level for the R383G mutant was too
low to determine localization using confocal microscopy.
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Next, we evaluated the R383G and R383A mutations in a
heterologous system, using Sf9 insect cells, a transfection system
that generally yields high protein levels allowing the study of proteins
with low expression levels in mammalian cells [40]. For both mutants,
the amount of protein expressed on immunoblot in Sf9 cells was
approximately one fifth of the wild-type levels (Fig. 6A), substantially
more than seen in the HEK 293 cells (Fig. 2C). Flow cytometry with the
5D3 monoclonal anti-ABCG2 antibody revealed that, similar to the
mammalian cells, the R383A mutant was detectable on the surface in
the insect cells, while the R383G mutant was not (Fig. 6B). Neither
mutant displayed any significant ATPase activity in the insect cells
(Fig. 6C).

The results presented so far suggest a critical role for the conserved
arginine 383 in the biogenesis of the ABCG2 protein. We postulated
that this arginine might function as an anchor of the first transmem-
brane alpha helix, thus more conservative substitutions were
performed: mutation to the positively charged lysine and introduction
of arginine at position 384 instead of 383, creating the R383K and
R383G/S384R mutants, followed by stable transfections in HEK 293
cells. Like R383A, the R383K mutant displayed some surface
expression on flow cytometry (Fig. 7A) and the protein was detectable
on immunoblot, though expression levels were still markedly reduced
when compared to the wild-type transfectant (Fig. 7B). Just as
observed for the alanine mutant, R383K was represented by a double
band on immunoblot suggestive of altered glycosylation. The
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Fig. 7. Surface expression, function and protein levels of the R383K mutant transfected into HEK 293 cells. (A) The R383K mutant (clone #8) detected on the cell surface with the 5D3
antibody by flow cytometry performed as described for Fig. 2. (Negative control antibody — solid line, 5D3 antibody — dashed line). (B) 30 pg of membrane proteins on immunoblot
with the BXP-21 antibody. (C) Flow cytometry following incubation in complete media containing 250 nM BODIPY-prazosin, or 20 M mitoxantrone, or 1 uM pheophorbide a, with or
without 10 uM of the ABCG2-blocker, FTC. (Accumulation without FTC — solid line, with FTC — dashed line).
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functionality of the R383K mutant was also assessed in flow
cytometry-based transport assays. All three tested ABCG2 substrates,
namely mitoxantrone, BODIPY-prazosin, and pheophorbide a, were
effluxed from the cells by this mutant as evidenced by increased
intracellular fluorescence after treatment with the ABCG2-inhibitor
FTC (Fig. 7C). On the other hand, none of the R383G/S384R mutant
clones was detectable either on the cell surface by flow cytometry
with the 5D3 antibody or on immunoblot with the BXP-21 antibody
(data not shown). The presence of the transfected vector was
confirmed by PCR using pcDNA3.1 vector specific primers followed
by sequencing.

Interestingly, we noted that an arginine to histidine mutation in
the corresponding residue in ABCG8 (R405H) had been reported in a
patient with sitosterolemia [41]. To study the effect of the same
substitution in ABCG2, we created stable R383H clones in HEK 293
cells. This mutant was not detectable on the cell surface with the 5D3
antibody or on immunoblot with the BXP-21 antibody (data not
shown). The presence of the mutant vector was confirmed by
sequencing DNA from the transfected clones.

4. Discussion

ABCG2 is an ATP-binding cassette half-transporter with a potential
role as a mediator of multidrug resistance in cancer. The protein is also
of great interest as the determinant of the side population of stem
cells; it most likely plays a major role in the pharmacokinetics of its
substrate drugs and in protection against xenobiotics. In the present
manuscript, we report mutational studies of a highly conserved
arginine residue predicted to precede TM1 of ABCG2. We used an
immortalized human cell system, HEK 293 that we and others have
found to be a good model for mutational analysis based on the ease of
transfection and the abundant protein generated in transfections of
the wild-type vector. In this system mutating arginine 383 to glycine,
alanine, histidine or lysine resulted in markedly reduced to no protein
expression, impaired glycosylation and retention in the ER. The R383A
mutant was shown to be degraded by the proteasome via a
kifunensine-insensitive pathway. In insect cells, more tolerant of
aberrant protein, more mutant protein was detected on immunoblot,
but no ATPase activity could be detected. These results highlight the
critical nature of this residue; the implications of the differences
among the substitutions are discussed.

Resolving the three dimensional structure of transporters like
ABCG2 will be critical in understanding how these proteins function
and could aid in designing specific inhibitors as well as predicting
whether particular molecules are transported by these pumps.
Although it is estimated that as much as 30% of the human genome
encodes membrane proteins [42], only a limited number of high-
resolution structures are currently available. To date, the structure of
little over 150 integral membrane proteins from different species is
known to greater than 4-A resolution. Only six of the known structures
are those of ABC transporters, all from bacteria, while no human ABC
transporter has been crystallized so far [43-48]. In the absence of
available crystal structures, mutational analysis has proven to be a
valuable tool in studying membrane proteins. An excellent example of
this is P-glycoprotein, in the case of which extensive mutagenesis
predicts a structure very similar to the recently crystallized bacterial
homologue Sav1866 [45,49].

The mutational analysis presented here emphasizes the impor-
tance of the conserved arginine 383 in ABCG2, where conservative and
non-conservative mutations alike have a large impact on protein
expression, trafficking and presumably folding. Elsewhere, non-
conservative substitutions like arginine with alanine or glycine do
not necessarily result in impaired protein folding and/or function. For
example, mutating arginine 482 of ABCG2 to glycine, results in altered
substrate specificity, often referred to as a gain-of-function, adding
doxorubicin, daunorubicin, rhodamine 123, etc. to the list of substrates,

although arginine 482 is predicted to localize near the cytoplasmic
side in TM3, while arginine 383 is predicted to be on the outside of
TM1 [24,34]. Arginine 482 might be involved in substrate binding
and/or recognition, given that mutations not only to glycine but to
almost any amino acid have the same gain-of-function effect
[27,50,51]. On the other hand, recent studies suggest that that residue
482 does not play a direct role in drug binding; rather, it might be
involved in energy coupling [52,53]. Similarly positioned arginines
and other positively charged residues have been implicated in
substrate recognition of MRP1, another human ABC transporter
associated with multidrug resistance [54-57]. For example, the
R1249A mutant of MRP1 has been described as having altered
substrate specificity. Arginine 1249 is on the cytoplasmic side of
TM17 of MRP1 and might correspond to TM1 of ABCG2 since the order
of the TMD and NBD in ABCG2 is reversed when compared to MRP1, a
full ABC transporter with 17 TMs [56]. Unlike arginine 482 of ABCG2
and the above-mentioned arginines of MRP1, the mutational analysis
presented here does not suggest a role for arginine 383 in substrate
binding, rather, the mutations described above seem to affect protein
folding, and/or trafficking.

Mutants that fail to properly fold or insert into the membrane are
most likely recognized by the cell's quality control machinery and are
thought to be rapidly degraded explaining the decreased expression
levels observed with such mutants [58]. Degradation may occur
through several pathways. Our results with the proteasome inhibitor
MG132 indicate that the R383A mutant is degraded via the
proteasome, while the wild-type protein is not. This result is in
agreement with recent studies describing proteasomal degradation of
certain ABCG2 mutants [59,60]. Although, these reports suggest that
the wild-type protein is degraded by the lysosome, our experiments
show no significant increase in the amount of wild-type protein
following inhibition of lysosomal degradation by bafilomycin. The
quality control pathway by which the R383A mutant is targeted to the
proteasome seems to be kifunensine-insensitive. On the other hand,
kifunensine treatment of the wild-type resulted in the appearance of a
lower molecular weight band, most likely representing the small
portion of the wild-type protein that is misfolded and degraded.
During the complicated process of protein synthesis and folding
multiple errors can occur resulting in proteins that are, similarly to
mutants, recognized by the ER quality control machinery and targeted
for degradation. A good example of this is the ABC transporter cystic
fibrosis transmembrane conductance regulator (CFTR) protein, in the
case of which, 40-60% of the wild-type protein is presumed to be
misfolded, retained in the ER, and rapidly degraded [61,62].

Our attempts, through overnight treatment with a substrate or
through culture at 28 °C, to “rescue” the mutant proteins, did not
succeed in increasing the levels of detected protein. Interestingly, in
the case of the R383A mutant, mitoxantrone seemed to help generate
the mature, glycosylated protein. Such an approach could be of clinical
importance in “rescuing” disease-causing mutants, such as certain
ABCG5 or ABCG8 mutants resulting in sitosterolemia. This strategy is
of particular interest in the case of CFTR, mutations in which result in
cystic fibrosis, a serious, sometimes fatal genetic disorder [63]. Other
examples of misfolded proteins rescued by chemical chaperones are
P-glycoprotein, MRP1, SUR1, and the dopamine D4 receptor as
reviewed by Loo et al. [64].

The R383A mutant localized to the cell surface and displayed some
function in the HEK cells. When transfected to Sf9 insect cells, R383A
was also detected on the surface, yet was unable to hydrolyze ATP.
Presumably, the insect cells are more tolerant of misfolded proteins;
this and their ability to generate higher levels of a misfolded protein
apparently leads to surface expression of a non-functional protein. We
surmised that quality control in mammalian cells is very sensitive to
proper folding and does not tolerate mutation at 383. If the process of
folding during protein translation involves some trial and error, a
small fraction may assume a normal conformation and fold together
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with its dimerization partner. These molecules reach the cell surface
and are able to transport substrates normally. This difference in
tolerance of misfolding between insect and human cells then leads to
the observed discrepancy: more protein is present on the insect cell
surface, yet it is not properly folded and the protein is non-functional.
Far less protein reaches the surface of a human cell, but it is properly
folded and is functional.

The residue corresponding to arginine 383 of ABCG2 is very well
conserved and predicted to localize near the cytoplasmic side of TM1
[24]. Charged residues are generally excluded from TM segments and
positively charged ones tend to cluster on the intracellular side of the
membrane serving as a type of membrane anchors, while negative
ones are more likely to be found on the extracellular side [65]. This
asymmetry in the distribution of charged residues, also called the
“positive-inside rule” [66], is thought to promote correct orientation
and insertion of transmembrane segments into the membrane bilayer.
Indeed, residues 382 and 386 of ABCG2 are lysines and 378 is another
arginine. With the exception of position 382, where the positive
charge is present in other members of the ABCG subfamily, these
residues are not conserved in the G subfamily. When arginine 383 was
replaced by glycine, a small, neutral amino acid, the mutated protein
was no longer expressed on the cell surface. Substitution with
histidine, the residue associated with sitosterolemia, with weak
positive charge at neutral pH, also resulted in loss of surface
expression. On the other hand, the results with alanine at 383
showing a small amount of surface expression and function suggest
that this amino acid of intermediate size between arginine and glycine
may have allowed lysine 382 and arginine 378 to serve as the
membrane anchor, whereas the glycine was too small. The R383K
mutant, which preserved the strong positive charge at this position,
was detectable on the cell surface and transported the tested
substrates, though protein expression levels were significantly
reduced. On the other hand, the differences observed with the various
substitutions could, at least partially, be attributed to changes in the
flexibility/motion of the surrounding sequence. Taken together, the
results of the conservative lysine substitution and the in vitro
translation experiments with the R383A mutant suggest that the
role of arginine 383 is beyond that of simply anchoring the membrane.

In conclusion, we can say that arginine 383 plays a critical role in
the proper expression, surface localization, and function of ABCG2.
The fact that even the most conservative mutation at this position
results in significant decrease in protein expression levels emphasizes
the importance of this residue. It will be interesting to discover
whether the corresponding R405H mutation in ABCG8 leads to similar
effects on protein levels and trafficking as predicted by our data but
not yet demonstrated in clinical samples, and if so, whether that
mutant can be rescued in part or to any degree by pharmacological
chaperones.
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